Корень из 321

II э т а п — знакомство с уравнением

(в концентре «Сотня» — 2 класс, ч. 1, с.

23841+х=514376 Вычислить корни уравнения.Вычисления выполнить столбиком.

68).

1. Дается понятие «уравнение», которое фактически сводится к замене «окошка» латинской буквой х и введению термина «неизвестное число». На этом этапе уравнения решаются у с т н о способом подбора.

Начать работу можно с решения 2-3 примеров с «окошками»:

 + 7 = 10

 5 = 8

15  = 6

— В разных примерах неизвестное число было обозначено «окошком», а в математике принято обозначать неизвестное число буквами латинского алфавита. Будем обозначать неизвестное число буквой х:

х + 7 = 10

х – 5 = 8

15 – х = 6

— Это уравнения. Решить его — значит найти неизвестное число. Чему равно неизвестное число в первом уравнении? втором? третьем?

2. Следует обратить внимание на отличие уравнения от выражения с переменной и числовых равенств (М-2, ч. 1, с. 70, № 1).

3. Учатся читать уравнения различными способами.

III э т а п — овладение способом решения уравнения.

1. Знакомство с решением уравнения на основе знания зависимости между компонентами и результатом действия сложения (М3, ч. 1, с. 7).

Для решения уравнений с помощью правила предлагается такое уравнение, которое дети не могут быстро решить способом подбора, например: х + 14 = 79.

Чтобы они лучше уяснили последовательность выполнения операций на основе взаимосвязи между компонентами и результатом арифметических действий, полезно использовать памятку «Как решить уравнение»:

1. Прочитай уравнение.

2. Назови, что известно и что неизвестно в уравнении и вспомни, как найти неизвестное число.

3. Найди неизвестное число, выполнив соответствующее арифметическое действие.

4. Запиши, чему равен х.

5. Сделай проверку.

2. Решение уравнений на основе знания зависимости между компонентами и результатом действия вычитания (М3, ч. 1, с. 8), умножения (М3, ч. 2, с. 19), деления ((М3, ч. 2, с. 17).

3. С целью формирования умений решать уравнения предлагают разнообразные упражнения:

1) Решите уравнения и выполните проверку.

2) Выполните проверку решенных уравнений в неверно решенных уравнениях:

20 — х = 8 х + 7 = 13 х : 24 = 2

х = 20 — 8 х = 13 + 7 х = 24 : 2

х = 12 х = 20 х = 12

3) Составьте уравнения с числами х, 7, 10, решите и проверьте решение.

4) Из заданных уравнений выберите и решите те, в которых неизвестное число находят вычитанием (делением).

5) Из заданных уравнений выпишите те, в которых неизвестное число равно 8.

6) Рассмотрите решение уравнения, определите, чем является неизвестное в уравнении, и вставьте пропущенный знак действия:

х * 2 = 12 х * 2 = 12

х = 12 : 2 х = 12 × 2

7) Вставь пропущенный знак действия и закончи решение уравнений:

х + 39 = 81 81 – х = 39 х – 39 = 81

х = 81 … 39 х = 81 … 39 х = 81 …39

8) Подчеркни уравнения, которые имеют одинаковые корни:

а) х : 27 = 120 + 29 б) х × (47 – 35) = 312

х : (3 × 9) = 130 + 270 х × (40 – 27) = 300 + 12

х : (9 × 3) = 400 х × (43 – 30) = 290 + 22

х : (54 : 2) = 200 × 2 х : 13 = 312

9) Выбери уравнения, которые соответствуют данной схеме, и реши их:

х 16

1) х + 16 = 25 4) 16 + х = 25

2) х – 16 = 25 5) 16 – х = 25

25 3) 25 – х = 16 6) х × 16 = 25

10) Выбери уравнение, которое соответствует данной схеме, и реши его:

64 29

х – 29 = 64

х + 29 = 64

х

11) Зачеркни уравнения, корни которых ты не сможешь найти:

375 – х = 207 х × 70 = 9

375 – х = 481 630 : х = 5

х + 129 = 117 570 – х = 750

534 + х = 670 х + 483 = 384

х : 20 = 300 х – 390 = 217

540 : х = 8 720 : х = 70

12) Соедини уравнения, у которых одинаковые корни:

5 × х + 3 × х = 60 5 × (х + 3) = 60

3 × х + 15 = 60

8 × х = 60 3 × (х + 5) = 60

5 × х + 5 × 3 = 60

15 + 5 × х = 60 (5 + 3) × х = 60

13) Соедини уравнения, которые имеют одинаковые корни:

       
 
   
 

       
   
 

14) Решите уравнения, сравните уравнения и их решения:

х + 8 = 40 х × 3 = 24

х – 8 = 40 х : 3 = 24

15) Пользуясь записью умножения «в столбик», найди корни уравнений:

х 375 375 × х = 9000 х = …

24 1500 + х = 9000 х = …

1500 375 × х = 750 х =

+750 375 × х = 7500 х = …

9000 9000 – х = 1500 х = …

16) Запиши различные уравнения, пользуясь их решением. Вычисли корни уравнений:

а)

б)

17) Запиши уравнение, пользуясь его решением, и вычисли корень:

х = 12 × 7 х = 17 × 4 х = 54 – 38

х = … х = … х = …

18) Закончи деление и, пользуясь выполненной записью, найди корни уравнений:

_98437 ½173 х × 173 = 865 х =

865 ½ 69

_ 3 х – 10380 = 1550 х = …

_ 98400 – х = 11900 х = …

0 173 × х = 98437 х = …

19) Соедини каждое уравнение с его решением:

       
 
   
 
     
 
 
   

20) Вставь пропущенные знаки действий, чтобы получились уравнения, соответствующие данной схеме:

х 10 20 35 … (х + 10)= 20

х … 10 = 35 – 20 35 … х = 10 + 20

21) Используя данную схему, составь два уравнения и найди их корни:

х

22) Используя данную запись ,

найди корни уравнений:

6 × х = 871 – 1 145 × 6 = 871 – х

х = … х = …

145 × х = 871 – 1 145 × 6 + х = 871

х =х =

(871 – х) : 6 = 145 (871 – 1) : х = 145

х = … х = …

4.

В 3 классе продолжается работа над уравнениями. В учебнике представлена система постепенно усложненных заданий, хотя уравнения остаются простейшими.

5. В 4 классе уравнения усложняются, в правой части вместо числа появляется простейшее выражение:

х – 16 = 14 + 5

6. Составление уравнений по задачам. Задачи предлагаются только с отвлеченными числами (несюжетные):

— Какое число надо увеличить в 3 раза, чтобы получить число, равное разности 96 и 6:

х × 3 = 96 — 6

На этом этапе главным для учителя является умение составлять уравнения по тексту задачи.

Задание 12. Найдите в учебниках М-3 (М-4) различные упражнения с целью формирования умения решать уравнения.

Как быстро извлекать квадратные корни

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень. Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней.

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

102 = 100;
202 = 400;
302 = 900;
402 = 1600;

902 = 8100;
1002 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа.

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

22 = 4;
82 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58.

Помогите пожалуйста Вычисли корни следующих уравнений вычисления Выполни столбиком

Возведем их в квадрат:

522 = (50 +2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;
582 = (60 − 2)2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный 🙂

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

Задача. Вычислите квадратный корень:

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
202 < 576 < 302

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

24; 26.

Осталось возвести каждое число в квадрат и сравнить с исходным:

242 = (20 + 4)2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

900 < 1369 < 1600;
302 < 1369 < 402;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

332 = (30 + 3)2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
372 = (40 − 3)2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

Ограничиваем число:

2500 < 2704 < 3600;
502 < 2704 < 602;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

522 = (50 + 2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

Ограничиваем число:

3600 < 4225 < 4900;
602 < 4225 < 702;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

652 = (60 + 5)2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В общем, учитесь считать. И все будет хорошо. Удачи!

Смотрите также:

  1. Выделение полного квадрата
  2. Преобразование выражений с корнем — часть 1
  3. Тест к уроку «Десятичные дроби» (2 вариант)
  4. Сводный тест по задачам B15 (1 вариант)
  5. Какие бывают репетиторы по математике в Москве
  6. Задача B15: работаем с показательной функцией без производной

Вычисли корни следующих уравнений Вычисли Выполни столбиком х-41269=185642



В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Ключевые слова: квадратный корень, извлечение квадратного корня.

На уроках математики я познакомился с понятием квадратного корня, и операцией извлечения квадратного корн. Мне стало интересно извлечение квадратного корня возможно только по таблице квадратов, с помощью калькулятора или есть способ извлечения вручную. Я нашел несколько способов: формула Древнего Вавилона, через решение уравнений, способ отбрасывания полного квадрата, метод Ньютона, геометрический метод, графический метод (, ), метод подбора угадыванием, метод вычетов нечётного числа.

Рассмотрим следующие способы:

  1. Извлечение корня путем разложения подкоренного числа на простые множители. Например.

Разложим на простые множители, используя признаки делимости 27225=5*5*3*3*11*11. Таким образом

  1. Канадский метод. Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность — не более двух — трёх знаков после запятой.

где х-число, из которого надо извлечь корень, с-число ближайшего квадрата), например:

=5,92

  1. Столбиком. Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр. Для ручного извлечения корня применяется запись, похожая на деление столбиком

Алгоритм извлечения квадратного корня

1.От запятой отдельно дробную и отдельно целую части делим на грани по две цифры в каждой грани (целую часть — справа налево; дробную — слева направо). Возможно, что в целой части может оказаться одна цифра, а в дробной — нули.

2.Извлечение начинается слева направо, и подбираем число, квадрат которого не превосходит числа, стоящего в первой грани. Это число возводим в квадрат и записывает под числом, стоящим в первой грани.

3.Находим разность между числом, стоящим в первой грани, и квадратом подобранного первого числа.

4.К получившейся разности сносим следующую грань, полученное число будет делимым. Образовываем делитель. Первую подобранную цифру ответа удваиваем (умножаем на 2), получаем число десятков делителя, а число единиц должно быть таким, чтобы его произведение на весь делитель не превосходило делимого. Подобранную цифру записываем в ответ.

Вычистили корни следующих уравнений . Вычисления выполни столбиком

5.К получившейся разности сносим следующую грань и выполняем действия по алгоритму. Если данная грань окажется гранью дробной части, то в ответе ставим запятую. (Рис. 1.)

Рис. 1

Рис. 2

Данным способом можно извлекать числа с разной точностью, например с точностью до тысячных. (Рис.2)

Рассматривая различные способы извлечения квадратного корня, можно сделать вывод: в каждом конкретном случае нужно определиться с выбором наиболее эффективного для того, чтобы меньше затратить времени для решения

Литература:

  1. Киселев А. Элементы алгебры и анализа. Часть первая.-М.-1928 г

Ключевые слова:квадратный корень, извлечение квадратного корня.

Аннотация:В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Умножение корней: основные правила

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное — брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее — и мы начинаем.:)

Урок получился довольно большим, поэтому я разделил его на две части:

  1. Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» — и мы хотим что-то с этим сделать.
  2. Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно — вопрос отдельный. Мы разберём лишь алгоритм.

Тем, кому не терпится сразу перейти ко второй части — милости прошу. С остальными начнём по порядку.

Основное правило умножения

Начнём с самого простого — классических квадратных корней. Тех самых, которые обозначаются $\sqrt{a}$ и $\sqrt{b}$. Для них всё вообще очевидно:

. Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

\

Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

Примеры. Рассмотрим сразу четыре примера с числами:

\

Как видите, основной смысл этого правила — упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt{32}$ и $\sqrt{2}$ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу.

Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Взгляните:

Примеры.

\

И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

Но это было лирическое отступление. Теперь рассмотрим более общий случай — когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

Случай произвольного показателя

Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

Примеры. Вычислить произведения:

\{20}\cdot \sqrt{\frac{125}{4}}=\sqrt{20\cdot \frac{125}{4}}=\sqrt{625}=5; \\ & \sqrt{\frac{16}{625}}\cdot \sqrt{0,16}=\sqrt{\frac{16}{625}\cdot \frac{16}{100}}=\sqrt{\frac{64}{{{25}^{2}}\cdot 25}}= \\ & =\sqrt{\frac{{{4}^{3}}}{{{25}^{3}}}}=\sqrt{{{\left( \frac{4}{25} \right)}^{3}}}=\frac{4}{25}. \\ \end{align}\]

И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно — определением) корня $n$-й степени:

\{{{a}^{2n+1}}}=a; \\ & \sqrt{{{a}^{2n}}}=\left| a \right|. \\ \end{align}\]

Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

Умножение корней с разными показателями

Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt{2}$ на какую-нибудь хрень типа $\sqrt{23}$? Можно ли вообще это делать?

Да конечно можно. Всё делается вот по этой формуле:

. Чтобы умножить $\sqrt{a}$ на $\sqrt{b}$, достаточно выполнить вот такое преобразование:

\{a}\cdot \sqrt{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Однако эта формула работает только при условии, что подкоренные выражения неотрицательны.

II э т а п — знакомство с уравнением

Это очень важное замечание, к которому мы вернёмся чуть позже.

А пока рассмотрим парочку примеров:

\{3}\cdot \sqrt{2}=\sqrt{{{3}^{4}}\cdot {{2}^{3}}}=\sqrt{81\cdot 8}=\sqrt{648}; \\ & \sqrt{2}\cdot \sqrt{7}=\sqrt{{{2}^{5}}\cdot {{7}^{2}}}=\sqrt{32\cdot 49}=\sqrt{1568}; \\ & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{625\cdot 9}=\sqrt{5625}. \\ \end{align}\]

Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)

Почему подкоренные выражения должны быть неотрицательными?

Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)~%» — короче, я нихрена в тот раз не понял.:)

Поэтому сейчас объясню всё по-нормальному.

Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

\{a}=\sqrt{{{a}^{k}}}\]

Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ — при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

\{a}\cdot \sqrt{b}=\sqrt{{{a}^{p}}}\cdot \sqrt{{{b}^{n}}}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

\{-5}\]

Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

\{-5}=\sqrt{{{\left( -5 \right)}^{2}}}=\sqrt{{{5}^{2}}}\]

Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

\{a}=\sqrt{{{a}^{k}}}\Rightarrow \sqrt{{{a}^{k}}}=\sqrt{a}; \\ & \sqrt{{{a}^{k}}}=\sqrt{a}\Rightarrow \sqrt{{{5}^{2}}}=\sqrt{{{5}^{2}}}=\sqrt{5}. \\ \end{align}\]

Но тогда получается какая-то хрень:

\{-5}=\sqrt{5}\]

Этого не может быть, потому что $\sqrt{-5} \lt 0$, а $\sqrt{5} \gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

  1. констатировать, что математика — это дурацкая наука, где «есть какие-то правила, но это неточно»;
  2. Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.

В первом варианте нам придётся постоянно вылавливать «неработающие» случаи — это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

Пример. В числе $\sqrt{-5}$ можно вынести минус из-под знака корня — тогда всё будет норм:

\{-5}=-\sqrt{5} \lt 0\Rightarrow \\ & \sqrt{-5}=-\sqrt{{{5}^{2}}}=-\sqrt{25}=-\sqrt{{{5}^{2}}}=-\sqrt{5} \lt 0 \\ \end{align}\]

Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат — число останется отрицательным.:)

Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

  1. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности — их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
  2. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные — используем злобную формулу \{a}\cdot \sqrt{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\].
  3. 3.Наслаждаемся результатом и хорошими оценками.:)

Ну что? Потренируемся?

Пример 1. Упростите выражение:

\{48}\cdot \sqrt{-\frac{4}{3}}=\sqrt{48}\cdot \left( -\sqrt{\frac{4}{3}} \right)=-\sqrt{48}\cdot \sqrt{\frac{4}{3}}= \\ & =-\sqrt{48\cdot \frac{4}{3}}=-\sqrt{64}=-4; \end{align}\]

Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

Пример 2. Упростите выражение:

\{32}\cdot \sqrt{4}=\sqrt{{{2}^{5}}}\cdot \sqrt{{{2}^{2}}}=\sqrt{{{\left( {{2}^{5}} \right)}^{3}}\cdot {{\left( {{2}^{2}} \right)}^{4}}}= \\ & =\sqrt{{{2}^{15}}\cdot {{2}^{8}}}=\sqrt{{{2}^{23}}} \\ \end{align}\]

Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

Пример 3. Упростите выражение:

\{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{{{a}^{3}}\cdot {{\left( {{a}^{4}} \right)}^{6}}}=\sqrt{{{a}^{3}}\cdot {{a}^{24}}}= \\ & =\sqrt{{{a}^{27}}}=\sqrt{{{a}^{3\cdot 9}}}=\sqrt{{{a}^{3}}} \end{align}\]

Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

  1. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
  2. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.

Например, можно было поступить так:

\{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{a}\cdot \sqrt{{{\left( {{a}^{4}} \right)}^{2}}}=\sqrt{a}\cdot \sqrt{{{a}^{8}}} \\ & =\sqrt{a\cdot {{a}^{8}}}=\sqrt{{{a}^{9}}}=\sqrt{{{a}^{3\cdot 3}}}=\sqrt{{{a}^{3}}} \\ \end{align}\]

По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt{5}\cdot \sqrt{3}$. Теперь его можно расписать намного проще:

\{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{{{\left( {{5}^{2}}\cdot 3 \right)}^{2}}}= \\ & =\sqrt{{{\left( 75 \right)}^{2}}}=\sqrt{75}. \end{align}\]

Ну что ж, с умножением корней разобрались. Теперь рассмотрим обратную операцию: что делать, когда под корнем стоит произведение?

Смотрите также:

  1. Что такое корень натуральной степени $n$
  2. Сложные иррациональные уравнения — что с ними делать и как их решать?
  3. Пробный ЕГЭ 2012. Вариант 1 (без логарифмов)
  4. Как решать задачи B15 без производных
  5. Как обеспечить себе достойную старость?
  6. Выбор репетитора по математике для подготовки к ЕГЭ

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

29 з, 0,250 с. 26.87 м